• Skip to primary navigation
  • Skip to main content

DebKR

To the Stars

  • About
  • Blog
  • Contact
Diving Into Data: Syllabus

Diving Into Data: Syllabus

29/02/2016 By debkr

syllabusData Science/Analytics: personalised training plan

Syllabus 2016 (Summary)

1. Programming stream

A. Java

B. Python

C. SQL

D. VBA

(E. XML – data exchange protocol)

F. R

(G. Hadoop – machine learning / big data)

(H. Spark – machine learning / big data)

=====================================================================

2. Mathematics stream

A. Linear algebra including matrix algebra

B. Multivariate calculus

C. Optimisation techniques

… and probably a lot more …

=====================================================================

3. Probability/Statistics stream

A. Basics of statistics

B. Basics of probability theory

C. Descriptive statistics

D. Inferential statistics

E. Statistical analysis

F. Advanced statistics

=====================================================================

4. Computer Science/Algorithms stream

A. Algorithms as found in various libraries and APIs

B. Computational thinking

C. Developing good programming style

=====================================================================

5. Data Science stream

A. Introduction to data science

B. Doing data science

C. Handling large data sets

D. Applied statistics for data science

E. Machine learning fundamentals for data science

[refer Machine Learning stream]

=====================================================================

6. Practical Analytics stream

A. Applications

B. Advanced data science for business applications

C. Visualising, transforming and analysing data in various programming languages

[in tandem with Programming Stream]

=====================================================================

7. Data Visualisation stream

A. Foundations of data visualisation

B. Tools, techonologies and platforms

C. Story-telling with data

=====================================================================

8. Machine Learning stream

A. Introduction to machine learning

B. Mathematical foundations of machine learning

[in tandem with Mathematics Stream]

C. Machine learning techniques and algorithms [for data science]

D. Deep learning

E. Advanced machine learning principles

F. Using Python for machine learning

G. Using R for machine learning

=====================================================================

Filed Under: Blog, Data Analytics, Data Science, Machine Learning, Personalised Training Plan, Programming

Copyright © 2016–2025 · Powered by WordPress On Genesis Framework · Log in

  • Writing
  • Developing
  • Consulting